GCE AS/A level

WJEC
0977/01

MATHEMATICS FP1 Further Pure Mathematics

A.M. FRIDAY, 27 Jonuary 2012
$11 / 2$ hours

ADDITIONAL MATERIALS

In addition to this examination paper, you will need:

- a 12 page answer book;
- a Formula Booklet;
- a calculator.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen.
Answer all questions.
Sufficient working must be shown to demonstrate the mathematical method employed.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.
You are reminded of the necessity for good English and orderly presentation in your answers.

1. Differentiate $\frac{1}{1-x}$ from first principles.
2. Find the modulus and the argument of the complex number

$$
\frac{1+3 \mathrm{i}}{1+2 \mathrm{i}}
$$

3. Consider the quadratic equation $a x^{2}+b x+c=0$, where a, b, c are real.

Given that one of the roots is double the other root,
(a) show that

$$
\begin{equation*}
a c=\frac{2 b^{2}}{9}, \tag{4}
\end{equation*}
$$

(b) deduce that both roots are real.
4. (a) Express $(2+3 \mathrm{i})^{3}$ in the form $x+\mathrm{i} y$, where x, y are real.
(b) Hence
(i) show that $2+3 \mathrm{i}$ is a root of the cubic equation

$$
x^{3}-3 x+52=0
$$

(ii) find the other two roots of the equation.
5. The matrix \mathbf{A} is defined by

$$
\mathbf{A}=\left[\begin{array}{lll}
k & 1 & 6 \\
1 & k & 4 \\
0 & 1 & 1
\end{array}\right]
$$

(a) Show that \mathbf{A} is non-singular for all real values of k.
(b) Given that $k=3$,
(i) find the adjugate matrix of \mathbf{A},
(ii) find the inverse matrix of \mathbf{A},
(iii) hence solve the equations

$$
\begin{align*}
3 x+y+6 z & =1, \\
x+3 y+4 z & =-1, \tag{7}\\
y+z & =-1 .
\end{align*}
$$

6. Use mathematical induction to prove that, for all positive integers n,

$$
\begin{equation*}
\sum_{r=1}^{n} r(r+1)=\frac{n(n+1)(n+2)}{3} \tag{6}
\end{equation*}
$$

7. The transformation T in the plane consists of a translation in which the point (x, y) is transformed to the point $(x+h, y+k)$ followed by a clockwise rotation through 90° about the origin.
(a) Show that the matrix representing T is

$$
\left[\begin{array}{rrr}
0 & 1 & k \tag{3}\\
-1 & 0 & -h \\
0 & 0 & 1
\end{array}\right]
$$

(b) Given that the fixed point of T is $(1,3)$,
(i) find the values of h and k,
(ii) find the equation of the image of the line $y=3 x+1$ under T.
8. The complex number z is represented by the point $P(x, y)$ in the Argand diagram. Given that

$$
|z-\mathrm{i}|=2|z+\mathrm{i}|,
$$

show that the locus of P is a circle and find its radius and the coordinates of its centre.
9. The function f is defined, for $0<x<1$, by

$$
f(x)=(\sin x)^{x}
$$

(a) Use logarithmic differentiation to show that

$$
f^{\prime}(x)=f(x) g(x)
$$

where $g(x)$ is to be determined.
(b) The graph of f has one stationary point. Show that its x-coordinate, α, lies between 0.39 and $0 \cdot 40$.
(c) Show that

$$
f^{\prime \prime}(\alpha)=f(\alpha) g^{\prime}(\alpha)
$$

Given that the value of α is 0.399 , correct to three significant figures, determine whether the stationary point is a maximum or a minimum.

